Cours de chimie générale avancée (CH160)

Série 12

Exercice 1

Combien est-ce qu'il existe d'isomères du bromochlorobenzène (C_6H_4BrCl) et du chloropentane ($C_5H_{11}Cl$) ?

Exercice 2

Quelle structure ne représente pas le composé suivant ?

Exercice 3

Quel conformère est le plus stable et le moins stable parmi les choix suivants ? Expliquer ces choix.

Exercice 4

Pour chaque couple de molécules ci-dessous, dire si elles sont énantiomères, diastéréomères, ou identiques ?

Exercice 5

Donner la formule brute et la masse molaire des composés suivants. Si la molécule est chirale, indiquer le carbone asymétrique par un *.

$$\bigcirc = \bigoplus_{\mathsf{OH}} \mathsf{OH} \qquad \qquad \mathsf{CI} \qquad \mathsf{N} \mathsf{O} \mathsf{OH}$$

Exercice 6

Parmi ces molécules, lesquelles ne sont pas aromatiques et pourquoi?

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

Exercice 7

Nommer les groupes fonctionnels présents dans les molécules suivantes :

Exercice 8

a) Donner le nom selon la nomenclature systématique des molécules suivantes :

b) Dessiner les deux énantiomères du 5-amino-2-methylhexan-3-one

Exercice 9

Parmi les molécules suivantes, lesquelles ne peuvent pas réagir en tant que nucléophile ?

- a) CH₃NH₂
- b) (CH₃)₃N
- c) $(CH_3)_4N^+$
- d) CH₃OH
- e) CH₃O⁻
- f) CH₃OCH₃
- g) $H_2C=CH_2$
- h) BH₃
- i) H₃O⁺
- j) OH-
- k) H₂O

Exercice 10

Dans la réaction ci-dessous, quelle étape n'utile pas correctement les flèches indiquant le flux d'électron ? Proposer une correction.

(a)
$$H$$
 (b) (C) H O H O H O H O H

Exercice 11

Ecrire les équilibres acide-base pour les composés suivants et attribuer les p K_a aux couples acide-base (1,7 ; 4,8 ; 11,1).

Exercice 12

VRAI ou FAUX

- a) Les doubles liaisons sont nucléophiles.
- b) Une addition électrophile sur une double liaison place majoritairement l'électrophile sur le carbone le moins substitué.
- c) Deux isomères chiraux sont forcément des énantiomères.
- d) Une substitution nucléophile S_N2 se fait en rapprochant un nucléophile de l'orbitale σ^* la plus basse en énergie.
- e) Plus un substituant est électronégatif, plus il est électrophile.
- f) Une molécule organique sera préférentiellement dans sa conformation de plus haute énergie.
- g) Le pentane et le 2-méthylbutane sont des isomères.